
U. SHMUELI, G. H. WEISS AND J. E. KIEFER 59 

SHMUELI, U. (1982b). In Crystallographic Statistics: Progra~land 
Problems, edited by S. RAMASESHAN, M. F. RICHARD$1DI~ & 
A. J. C. WILSON, pp. 53-82. Bangalore: Indian Academy of 
Sciences. 

SHMUELI, U., WEISS, G. H., KIEFER, J. E. & WILSON, A. J. C. 
(1984). Acta Cryst. A40, 651-660. 

SHMUELI, U. & WILSON, A. J. C. (1981). Acta Cryst. A37, 342-353. 
SHMUELI, U. ~; WILSON, A. J. C. (1982). In Conformation in 

Biology, edited by R. SRINIVASAN & R. H. SARMA, pp. 383-388. 
Guilderland, New York: Adenine Press. 

SHMUELI, U. • WILSON, A. J. C. (1983). Acta Cryst. A39, 225- 
233. 

SRINIVASAN, R. & PARTHASARATHY, S. (1976). Some Statistical 
Applications in X-ray Crystallography, p. 61. Oxford: Pergamon 
Press. 

WEISS, G. H. & KIEFER, J. E. (1983). J. Phys. A. Gen. Phys. 16, 
489-495. 

WILSON, A. J. C. (1949). Acta Cryst. 2, 318-321. 

WILSON, A. J. C. (1952). Nuovo Cimento, 9, 50-55. 

Acta Cryst. (1985). A41, 59-67 

Symmetries in Texture Analysis 

BY H. J. BUNGE 

Institut fiir Metallkunde und Metallphysik, TU CIausthal, D-3392 Clausthal-Zellerfeld, 
Federal Republic of Germany 

AND C. ESLING 

Laboratoire de Mdtallurgie Structurale, Universitd de Metz, F-57045 Metz Cedex, France 

(Received 21 March 1983; accepted 1 August 1984) 

Abstract 

It is shown that a comprehensive symmetry descrip- 
tion in polycrystalline bodies needs black-white point 
groups rather than the usual (one-colour) groups that 
are sufficient for single crystals. 

1. Introduction 

Crystalline solids such as metals, ceramics or natural 
rocks usually exhibit a polycrystalline structure, i.e. 
they consist of small crystallites of the same crystal 
structure but with different orientations of their crys- 
tallographic axes. The orientation distribution of the 
crystallites is called the texture of the materials. If all 
crystal orientations are equally frequent, the material 
is then said to be macroscopically isotropic, i.e. its 
properties are the same in all directions. If, however, 
different orientations are present with different rela- 
tive frequencies, the anisotropies of the crystallites 
will, in general, not cancel each other and the material 
will be macroscopically anisotropic, i.e. its physical 
properties will be different when measured in different 
sample directions. In the latter case, symmetries may 
be observed in the directional dependence of the 
properties according to the specific features of the 
orientation distribution function. This type of sym- 
metry has been called sample symmetry and it should 
be kept distinct from crystal symmetry. The sample 
symmetry in rolled metal sheets, for example, is deter- 
mined by the symmetry of the production process, 
i.e. the geometry of the roll gap by which the material 
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has been shaped. This is an orthorhombic symmetry 
and the same type of symmetry is found in materials 
with different crystal structure and crystal symmetry, 
e.g. in cubic, hexagonal, tetragonal metals. (The 
details of the orientation distribution of the crystal- 
lites are, of course, different in these casbs whereas 
the type of sample symmetry is the same.) 

The purpose of this paper is to show that sample 
symmetries in polycrystalline materials can arise in 
two different ways, either by one-to-one relations 
between individual crystal orientations (conventional 
symmetry operations) or by certain integral relations 
taken over a continuous manifold of orientations 
(non-conventional symmetry operations). The non- 
conventional symmetry operations can occur in addi- 
tion to the conventiortal ones, thus requiring an 
extension of the conventional point-symmetry groups 
for polycrystals (Bunge, Esling &. Muller, 1980). The 
most efficient description of this extension is that of 
black-white groups considered for the first time by 
Heesch (1930), Shubnikov (1951) and Niggli & Won- 
dratschek (1960). 

It should be mentioned that black-white sym- 
metries have been considered in connection with tex- 
tures by Shubnikov (1958), Shubnikov, Sheludev, 
Konstantinova & Silvestrova (1958), Shubnikov & 
Belov (1964), but in a completely different sense. In 
these cases crystals having an additional black-white 
property were considered, whereas in the present 
paper the black-white notation is being used in order 
to describe certain properties of the orientation distri- 
bution of single-coloured crystals. A comprehensive 
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discussion of the symmetries in textured materials 
has also been given by Paterson & Weiss (1961). But 
this work does not consider, any more than the other 
ones mentioned above, the possible existence of non- 
conventional symmetry operations. 

2. Crystal symmetry 

We consider a coordinate system K8 in each crystal- 
lite, which is assumed to be made up of the same 
basis vectors. The position of the origin of Ks is 
considered irrelevant. A crystal direction can then be 
characterized by a unit vector h with components 
h~, h2, h 3 with respect to Ks. A crystal symmetry 
operation (point symmetry) is defined by a unitary 
transformation of crystal directions, which relates a 
transformed direction h t to any crystal direction h, 

h'i = aijhj, (1) 

such that h and h' are crystallographically equivalent, 
which may be symbolized by 

h' omoh. (2) 
The space transformation (1) and the equivalence 
relation (2) define together a symmetry operation in 
the space of the crystal directions h. The symmetry 
operation may be of first or second kind according 
to whether the determinant la,jl is +1 or -1 .  The 
crystal symmetry, made up of the totality of symmetry 
operations (1) and (2), is described by one of the 32 
crystallographic point groups. 

3. Sample symmetry 

We now consider a polycrystalline sample and fix 
another coordinate system K A in it. A sample direc- 
tion can then be defined by a unit vector y with the 
components y~, Y2, Y3. In order to define the sample 
symmetry in the same way as the definition of crystal 
symmetry, (1), (2), we should first define what we 
mean when we say that two sample directions y and 
yt are equivalent. Because of the statistical nature of 
a polycrystal this question can only be answered in 
a statistical sense. Two sample directions y and y' are 
said to be equivalent if the same 'amounts' of crystal 
directions h fall into them. The totality of crystal 
directions h coinciding with a fixed sample direction 
y is defined by a distribution function. 

Ry(h) = ( l / V )  d V / d n ,  (3) 

which describes the volume fraction d V~ V of crystal- 
lites, the crystal direction h of which is parallel to the 
fixed sample direction y within the solid angular 
element d12, i.e. the surface element on the pole 
sphere. This distribution function (as a function of 
h) is called the inverse pole figure of the sample 
direction y. The inverse pole figure may be represen- 
ted for example by level lines in a stereographic 

projection on a certain crystal plane as is shown, for 
example, in Fig. 1. The equivalence of two sample 
directions y and y' is then defined by the identity of 
their inverse pole figures. 

We first consider crystals without symmetry, i.e. 
crystals belonging to class 1. This is an enantiomor- 
phic class, i.e. right- and left-handed crystals may be 
present in the material. In the most general case the 
amounts M R and M L of the right- and left-handed 
fractions may be different and this may apply to the 
respective textures, too. Correspondingly, we also 
have to consider two inverse pole figures, i.e. the ones 
of the right- and of the left-handed fraction. An 
equivalence of two sample directions y and y' is then 
obtained if the inverse pole figures are identical in 
the two directions. 

gR(h) = RR(h), Ryt(h) = R~,(h) (4) 

as shown in Fig. l (a)  (equivalence of first mode). 
The crystal lattice of the right-handed crystals can 

be transformed into that of the left-handed crystals 
by a unitary transformation, similar to (1) with [aik [ = 
- 1. In this way a crystal direction h L in the left-handed 
crystal is related uniquely to the corresponding direc- 
tion h R in the right-handed crystal. The two directions 
are crystallographically equivalent in the same sense 
as symmetry-related directions h and h' within a crys- 
tal, i.e. they are equivalent in the sense of (2). The 
equivalence of two sample directions y and y' can 
then be defined in a generalized way. Two sample 
directions y and y' are also said to be equivalent 
(equivalence of second mode) if the same 'amount'  
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Fig. 1. Two modes of equivalences of two sample directions 
defined by the inverse pole figures of right- and left-hand crystals. 
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of equivalent crystal directions h R and h L respectively 
falls into them. In this case the inverse pole figures 
are 'cross related': 

R~(h) = Ry,(h),R RR(h) = R~(h), (5) 

as is shown in Fig. l(b). Using these relations we 
define a symmetry operation of the sample symmetry 
by a unitary,a..[ansformation of sample directions 

y~= a~jyj, (6) 

which may be of first or second kind, according to 
whether the determinant [auI is + 1 or -1 ,  in complete 
analogy to the definition of (l) in the space of crystal 
directions. At the same time, we may however have 
either of two different equivalence relations, which 
we symbolize as 

y' ~_~ y first mode; 

yt .ox] y second mode. (7) 

The sample symmetry operations can thus be 
classified in four categories S, S', S, S' according to 
Fig. 2. The symmetry operations S and S (correspond- 
ing to the equivalence of first mode) belong to one 
of the classical point-symmetry groups, and since we 
are not dealing with crystal symmetry here, they are 
not restricted to the crystallographic groups. The sym- 
metry operations S' and S' (corresponding to the 
equivalence of second mode) exchange the right- and 
left-handed inverse pole figures. The product of two 
such operations is an operation of first mode. This 
can be symbolized by a colour change from black to 
white or vice versa. The sample symmetry in a poly- 
crystalline sample is thus correctly described by a 
black-white point group. 

The description of sample symmetries by black- 
white point groups has been suggested by Bunge, 
Esling & Muller (1980) who discussed symmetry 
properties of orientation distribution functions oftex- 
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Fig. 2. Sample symmetry operations can be divided into four 
categories according to the mode of equivalence and the kind 
of symmetry operation. 

tured materials. The symmetry conditions in these 
functions corresponding to the various symmetry 
classes were considered later on in detail by Bunge, 
Esling & Muller ( 1981 ), Bunge (1982b), and Matthies 
& Helming (1982). In these papers it was also shown 
that the classical point groups (including the non- 
crystallographic ones) are not sufficient to cover all 
possible sample symmetries because of the existence 
of two different equivalence relations (7). In Fig. 3, 
four sample symmetries are considered, as an 
example, corresponding to twofold axes and twofold 
inversion axes, i.e. mirror planes. Three different 
sample directions are represented in order to eluci- 
date the change from a right-handed to a left-handed 
arrangement of these directions by symmetry 
operations of the second kind. This change is to be 
kept distinct from the change from black to white 
according to the second mode of equivalence. Fig. 3 
thus represents an example of the four categories of 
sample symmetries defined in Fig. 2. A further 
example will be detailed in Fig. 10. 

4. Symmetries of pole figures 

In Fig. 1 inverse pole figures were used to define the 
equivalence of two sample directions. The (direct) 
pole figures are more often used in texture analysis. 
They represent the distribution of one fixed crystal 
direction h over the variable sample directions y 

Ph(Y) = (1 / V) d V~ dO, (8) 

where d V~ V is the volume fraction of crystals having 
their crystal direction h parallel to the sample direc- 
tions y within the solid angular element dO. The only 
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Fig. 3. Sample symmetry operations of the first and second 'kind 
relating sample directions that are equivalent according to the 
first or second mode of equivalence. All points are in the upper 
hemisphere. 
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difference with respect to the inverse pole figure (3) 
lies in the variabilities of the two directions h and y. 
Whereas in (3) the sample direction y is fixed and 
the crystal direction h is continuously variable, the 
opposite is true in the (direct) pole figure (8). Pole 
figures may be represented by equi-level lines drawn 
in a stereographic projection (projected onto a 
specific sample plane) as shown in Fig. 4. Again, we 
have to consider the distribution of the corresponding 
crystal direction of the right-handed and left-handed 
crystals. The symmetries in Fig. 4 are the same as 
those in Fig. 3. As can be seen in Fig. 4, the symmetry 
operations without a dash operate within each pole 
figure (right and left) whereas the ones with a dash 
include a transition from the right-handed to the 
left-handed pole figure. They are thus colour- 
changing operations. 

5. Conventional and non-conventional symmetry 
operations 

In the general case we are dealing with continuous 
orientation distributions, which we assume to be built 
up by an infinite (or at least a very large) number of 
crystallites. The symmetry operations of the sample 
symmetry considered in the preceeding sections are 
defined on the basis of the totality of crystal directions 
coinciding with the considered sample directions, 
irrespective of which individual crystallites these crys- 
tal directions belong to. In fact, every crystallite con- 
tributes to any chosen sample direction with one 
particular crystal direction. The symmetry operations 
of the sample symmetry, so defined, are integral rela- 
tions over all crystallites of the sample. 

We may, however, wonder if, in specific cases, these 
integral conditions can be fulfilled in a simple way 

by only a few crystallites. As is to be seen in Fig. 5, 
this is possible, for instance, with the symmetries 2 
and 2.' of Fig. 3. The symmetry 2 can be fulfilled by 
putting two right-handed crystals into orientations 
related by the twofold axis so that their directions h R 
fall into the two sample directions yR of Fig. 3. 
Similarly, the symmetry 2' can be easily fulfilled by 
putting a right- and a left-handed crystal into mirror- 
related orientations. One easily sees that the required 
symmetry relations are then automatically fulfilled 
for all other sample directions, of which three are 
explicitly shown in Figs. 3 and 5. If one tries to fulfil 
the remaining two symmetry cases of Fig. 3 in a similar 
way with only two crystals, one sees that this is not 
possible. Indeed, the handedness of the sample direc- 
tions required by the geometrical part of the symmetry 
operation (6) (same handedness in 2', opposite 
handedness in 2) does not correspond to the handed- 
ness of crystal directions (indicated by black and 
white), which are to be parallel to these directions. 
Symmetry operations of this type have thus been 
assumed to be contradictory in their very definition. 

The contradiction disappears, however, if one 
admits (corresponding to the integral definition of 
the sample symmetry operation) that the crystal 
directions hlh2h3 required in the three neighbouring 
sample directions (Fig. 3) need not necessarily belong 
to one and the same crystallite. They may belong, for 
example, to three different crystallites. Of course, in 
this case, the symmetry will be violated in other 
sample directions but this can be taken care of by 
adding further crystals. This leads to a never-ending 
procedure, which cannot possibly be imagined 
beyond a few steps. The question is then whether it 
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Fig. 4. The sample symmetries 2, 2', 2, 2' as seen in the pole figures 
of the right- and left-handed crystals (the symmetry symbols in 
parentheses correspond to an alternative notation that is 
explained in § 7). 

Fig. 5. The conventional sample symmetries of the first and second 
kinds can be fulfilled by a low number of crystals, e.g. two 
crystals in the present case (stereographic projection in the 
sample coordinate system). 
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is possible to fulfil these symmetry cases by an infinite 
number crystals, i.e. by true orientation distribution 
functions (the two crystals assumed as an example 
in the conventional symmetry cases may also be 
considered as 'distribution functions', but they are 
very specific functions having a 6 character). If we 
assume genuine orientation distribution functions of 
right-handed and left-handed crystals of class 1 and 
if we consider the most general case then the pole 
distributions of the right-handed directions h R and 
of the left-handed h L may each be chosen 
independently and deliberately. They may be chosen 
specifically in the forms shown in the upper-right or 
the lower-left cases of Fig. 4, i.e. with the symmetries 
2' and 2 assumed in these figures. The sample 
symmetries required in Fig. 3 were based on the 
equality of inverse pole figures of the corresponding 
sample directions. They are thus fulfilled if the 
symmetries of Fig. 4 are likewise fulfilled for all pole 
figures of all possible crystal directions h R and h L. 
The symmetries 2 and 2' of Fig. 3 (and similar cases) 
will then be called non-conventional symmetries. 

6. Are non-conventional symmetry operations really 
possible? 

The various pole figures belonging to different crystal 
directions h are not independent of each other. They 
are related to the orientation distribution function of 
the crystallites. The question whether the non-conven- 
tional symmetries in Fig. 4 can be fulfilled for all pole 
figures is thus the question of the possible existence 
of an appropriate orientation distribution function. 
If we deal with enantiomorphic crystals we have to 
consider two orientation distribution functions fR(g)  
and fL(g). 

fR(g)  = (1 /V R) d VR/dg; 

fL(g) = (1 /V  L) d VL/dg, (9) 

where g stands for the crystal orientation rel~resented , 
for example, by three Eulerian angles, d V'~/V n and 
d v L / V  L are the volume fractions of right- and left- 
handed crystals, respectively, having the orientation 
g within the orientation element dg, i.e. a volume 
element in the three-dimensional orientation space. 
The pole figures are related to the orientation distribu- 
tion functions by the integral relations (Esling, 1981; 
Bunge, 1982b). 

pR(y) = (2rr)- '  I fR(g)  dT, 

nt(y) = (27r)-, ~fL(g) dy, (10) 

where the integrals are taken over all those crystal 
orientations for which the crystal direction h R (or h L) 
is parallel to the sample direction y. The above- 
mentioned qRuestion can easily be answered if the 
functions f and f t  are represented by series (cf 

Bunge, 1982a; Bunge & Esling, 1982a) 

f R ( g ) =  y. gc?,,T,(,,,(g); 
Iron 

fL(g)  • L.-,m,,.-..m,,. . = t..l I i  tg), (11) 
iron 

where T'~"(g) are harmonic functions. The two tex- 
tures are thus completely represented by the two sets 
of coefficients RC~" and LC'~". It has been shown 
that the pole figures can also be expressed in terms 
of these coefficients: 

P~(y) 5-'. (47r)(21 + 1)-' R , , , , ,  * m  n = C, k, (h)kt(y); 
Iron 

I L " m n  * m  n . P~(y)= ~ (47r)(21+1)-1(-1) CI kt (h)kt(y), 
Iron 

(12) 
where k~' are spherical harmonics that have the form 

k'~(Y)= k'~(a, fl)=(27r)-l/2p'~(a) exp (infl) (13) 

where/57(a) are the associated Legendre functions. 
The asterisk refers to the conjugate complex quantity. 
The functions (13) have the twofold symmetry axis 
required in Fig. 4 if n is even and they have a mirror 
plane if l+  n is even (see for example Bung_e, 1982a). 

In order to fulfil the sample symmetry 2 of Fig. 4 
it is necessary that all pole figures, right- and left- 
handed, are each mirror symmetrical. This entails that 
the coefficients of the functions k~'(y) in (12) should 
be zero for those indices that violate the mirror condi- 
tions t+n even: 

~, Rc,~nk~m(h ) ~ L mn *m = Cl kl (h) =0 
r n  m 

for l+n odd. (14) 

Since (14) must be fulfilled for all crystal directions 
b, it implies that all texture coefficients vanish for 
l + n odd. This is the necessary and sufficient condi- 
tion for the non-conventional sample symmetry 2 to 
be fulfilled. 

The symmetry 2' in Fig. 4 requires a relationship 
between the right-handed and left-handed pole 
figures, (12). If we designate by y and yt two sample 
directions related by the twofold axis, the relationship 
PhL(y t) = P~(y) must be fulfilled. According to (13) it 
is k~'(y')= (-1)"k~'(y), which requires with (12) 

E L  mn *m .~_ (__ 1 ) l + n  C 1 kt (h) ~, RC'~"k~m(h). (15) 
m m 

Equation (15) must be valid for all pole figures h, 
thus leading to the final condition 

LC?"=(--1)t+"RC?". (16) 

In this case, the symmetry is obtained by a relation 
between right- and left-handed crystals. This requires 
equal volume fractions of the crystal forms ( M  R= 
M L= 1/2). Considerations similar to those applying 
to the two cases of non-conventional symmetries in 
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Table 1. Symmetry conditions expressed in terms of  the 
series coefficients for the symmetry cases of  Fig. 4 

RcTn = Lc?" = o Lc?" = (-1) '÷n Rc?" 
fo r  M t" = M R 

n o d d  

2 2' 

Rc?" = LC?" = 0 LC?" = ( - l )"  R e ? .  
fo r  M L = M n 

1 + n o d d  

Fig. 4 also hold for the conventional ones 2 and 2'. 
The symmetry conditions summarized in Table 1 are 
thus obtained. 

For a certain function f(g) to be a possible orienta- 
tion distribution function, the latter must be positive. 
(There cannot be less than no crystal in any orienta- 
tion.) Hence, the positivity conditions fR(g) > 0 and 
fL(g) >_ 0 must be added to the symmetry conditions 
of Table 1. This restricts the allowable ranges of the 
coefficients RC'fn and LC?n. It is, however, easy to 
see that a distribution function of the type 

f (g )=l+CT'TT~"(g ) ,  IC'~ n -<1, (17) 

is always positive (Bunge & Esling, 1982b). Distribu- 
tion functions of the type (17) with coefficients LC~f" 
and RC'fn, when chosen to meet the conditions of 
Table 1, prove the possibleexistence of non-conven- 
tional symmetries such as 2 and 2'. As was shown in 
Fig. 5, the conventional sample symmetries can be 
obtained by adding a crystal of the same or opposite 
handedness in a symmetrically related orientation to 
any crystal in any orientation present in the sample. 
This one-to-one relation can easily be imagined. Non- 
conventional symmetries can only be built up in truly 
continuous distribution functions. If we deal with 
true polycrystals we deal anyway with truly con- 
tinuous distribution functions, even when dealing 
with conventional sample symmetries. This consider- 
ably reduces the conceptual difference between the 
two modes of symmetries. The only difference left 
from this point of view is then that the conventional 
symmetries are much more easily imagined because 
of the one-to-one relation between individual crystal 
orientations. It has been argued that a sample sym- 
metry operation that maintains or changes the 
handedness of sample directions has to have the same 
effect in the space of crystal directions. The above 
mentioned considerations show, however, that this is 
not the case. The definition of the sample symmetry 
is completely independent of the crystal symmetry 
(with only one exception as we shall see later). 

7. An a l ternat ive  notat ion  o f  the sample  symmetr i e s  

As was shown in Fig. 2, sample symmetry operations 
can be divided into four categories, which were distin- 
guished by two different symbols, a bar and a dash. 

The bar denotes a geometrical symmetry operation 
of the second kind and the dash denotes an 
equivalence relation of the second mode, which was 
also symbolized by a black-white change. 

The notation of Fig. 2 is in direct accordance with 
the symmetries in the pole figures shown in Fig. 4. 
The symmetry operations of the categories S and 
in Fig. 2 apply directly to the pole figures of the 
right-handed and of the left-handed crystal fraction. 
The operations of the categories S' and S' involve a 
transition from the right-handed pole figure to the 
left-handed one and vice versa. (Each of these pole 
figures by itself does not exhibit the corresponding 
symmetry.) The black-white change symbolized by 
the dash does thus correspond to a jump from one 
pole figures to the other, which is necessary in order 
for the geometrical symmetry operation to be fulfilled. 
On the other hand, the conventional sample sym- 
metries of the second kind, i.e. the ones that change 
the handedness of sample directions, do also change 
the handedness of crystal directions falling into them. 
In the notation of Fig. 2, these conventional symmetry 
operations are being denoted in a non-classical way 
by S', i.e. including the dash or black-white change. 
This has been subject to criticism (Donnay & Donnay, 
1982). It has been argued that it must be possible to 
describe the conventional sample symmetries by the 
classical notation, i.e. without a symbol denoting a 
colour change. This is indeed possible if one also 
assigns another colour change to the change of 
handedness of the sample directions, i.e. to the 
geometrical symmetry operations of the second kind. 
The conventional symmetry operations S and S' of 
Fig. 2 are then characterized by either no change of 
handedness and hence no colour change (S) or by 
change of handedness of the sample as well as the 
crystal directions (S'), i.e. by two colour changes that 
cancel each other. Thus, a colour change remains 
only in those categories of sample symmetries that 
change handedness, of either sample directions or 
crystal directions, but not both. 

These are the non-conventional categories of 
sample symmetries. In order to distinguish this nota- 
tion from the one in Fig. 2, another colour-changing 
symbol must be used, e.g. an asterisk. This leads to 
a second notation, which is given in Fig. 6. This 
notation does, however, violate the classical notation 
of symmetries in the pole figures as is seen in Fig. 4. 
The conventional mirror symmetry in the right- 
handed and in the left-handed pole distribution func- 
tions (lower left) is then denoted in a nonclassical 
way, i.e. including an asterisk, by 2". 

Hence, one is bound to violate classical symmetry 
notations anyway. From the point of view of texture 
analysis the pole figures may be considered as the 
fundamental quantities. This gives us preference for 
the notation of Fig. 4. The 'pure' crystallographer, 
however, may prefer the notation of Fig. 6 in which 
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the conventional symmetries are denoted in the 
classical way. 

8. Implications of crystal symmetry 
8.1. Symmetries of  inverse pole figures 

We now admit that the crystals themselves may be 
symmetric. The texture may then be interpreted in 
such a way that each crystal is assumed to be split 
into as many equal parts as there are symmetrically 
equivalent orientations of the crystal coordinate sys- 
tem. In Fig. 7(a) for example the case of a mirror 
plane is shown. In this case (symmetry operation of 
the second kind) one part of the crystal belongs to 
the volume fraction of the right-handed, the other to 
that of the left-handed crystals. We can thus keep the 
definition of the right- and left-handed textures, 
though with a certain relationship between them in 
the case of non-enantiomorphic crystals. With this 
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Fig. 6. A second notation of sample symmetry operations to be 
compared with Fig. 2. 

(a) (b) 

Fig. 7. Crystal and sample symmetry elements. (a) The mirror 
plane in the crystal symmetry does not imply a mirror plane in 
the sample symmetry. (b) An inversion centre of the crystal 
symmetry implies an inversion centre in the sample symmetry. 

description of the texture, we still have two inverse 
pole figures for each sample direction though with a 
certain relationship between them depending on the 
specific crystal symmetry. 

In Fig. 8 the inverse pole figures are shown for the 
crystal symmetry cases 2, 2 and 1. In the case ). the 
crystal direction [hlh2h3] in the fight-handed crystal 
coordinate system and hence in the right-handed 
inverse pole figure is identical with the direction 
[hll~2h3] in the left-handed crystal coordinate system 
and hence in the left-handed inverse pole figure. In 
the case of the inversion centre T the relationship is 
[hlhmh3] equivalent to [hlhEh3]. The symmetry 
relationships in the inverse pole figures in these three 
cases are 

2 R Ry (hlhmh3) = RyR (hlh2h3) , - -  Ryt'(hlhmh3)= R~(hlhmh3); 

YZ L gy(h~hEh3) = RR(h~hmh3); 

T R~(hlhmh3) = g - - - Ry (h]hEh3). (18) 

Although the right-handed and left-handed inverse 
pole figures in the non-enantiomorphic cases are 
related to each other, they are not identical. The two 
definitions of equivalence of sample directions (4) and 
(5), Fig. l, can thus still be applied. The consider- 
ations in § 3 on the definition of the sample symmetry 
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Fig. 8. Right- and left-handed inverse pole figures for the crystal 
symmetries 2, 2 and 1. 
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can thus be applied fully also in the cases of non- 
enantiomorphic crystals (see also Bunge, 1982b). It 
is, of course, also possible in this case to use only 
one crystal coordinate system and hence only one 
inverse pole figure, say the right-handed one. The two 
equivalence relations (4) and (5) can then be formu- 
lated for non-enantiomorphic crystals 

Ry(h)  = Ry, (h)  m o d e  1; 

Ry(h) = Ry,(l.gh) mode 2, (19) 

where I .  g is one of the symmetry operations of the 
second kind of the crystal symmetry. 

8.2. Symmetry elements common to crystal and sample 
symmetry 

A crystal symmetry element is, as a rule, oriented 
differently in the various crystals of a sample, as is 
shown in Fig. 7(a) for the case of a mirror plane. 
The mirror plane of the crystal symmetry is thus not 
an element of the sample symmetry. The same holds 
for all 'directional' crystal symmetry elements, i.e. the 
n-fold axes and inversion axes with n-> 2. The 'non- 
directional' inversion centre, on the other hand, is 
common to all crystals and is thus an element of the 
sample symmetry as is shown in Fig. 7(b). This is the 
only (general) case where a symmetry element of the 
crystal symmetry requires a symmetry element of the 
sample symmetry. 

The various triclinic symmetries are given in the 
black-white representation in Fig. 9. Sample direc- 
tions in this figure are represented in stereographic 

projection referred to the sample coordinate system 
in the upper and lower hemispheres. Directions that 
are equivalent according to the first mode of 
equivalence are shown in the same colour whereas 
the second mode of equivalence is indicated by a 
colour change. This representation corresponds to the 
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first symmetry notation. The first two symmetries are 
single-colour groups, the third one is a true black- 
white group and the fourth and fifth ones are grey 
groups, i.e. a point is at the same time black and 
white. 

As is seen in Fi~. 9 there are two possible kinds of 
inversion centres 1' and 11' in the sample symmetry 
that are consistent with an inversion centre in the 
crystal symmetry. One of these inversion centres is 
conventional, the other one is non-conventional. A 
third kind of inversion centre T may occur with non- 
centrosymmetric crystals. 

9. Example of specific sample symmetries: 
the monoclinic symmetries 

Since we have referred several times to binary axes 
2 and inversion axes 2, the monoclinic black-white 
groups are shown as examples in Fig. 10. They may 
be single colour, grey or true black-white. The choice 
of colours in Figs. 9 and 10 corresponds to the first 
notation. The second notation is also given in the 
second column. This notation reflects the conven- 
tional and non-conventional symmetries as indicated 
in the third column. The fourth column again shows 
the possible symmetry classes for centrosymmetric 
crystals. 
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Abstract 

The precision of the numerical algorithm used is the 
critical factor in computing traverse topographs. The 
varying-step algorithm allows such a computation. 
Images have been computed simulating the real 
experiment, i.e. by the addition of the intensities of 
individual section topographs. Results are in good 
agreement with experiments: it has been possible to 
characterize dislocations fully by the study of the fine 
details of their contrast. This may be of practical 
interest whenever section topographs cannot be used, 
as, for instance, in the case of thin crystals. 

I. Introduction 

Traverse topography is the most popular topographic 
method since it permits, in one single experiment, the 

0108-7673/85/010067-06501.50 

study of a large volume of a crystal. However, in most 
cases, one is restricted to qualitative studies. Section 
topography allows quantitative measurements but its 
use is limited: the experiment is rather delicate to 
perform and becomes impossible in the case of thin 
crystals where the width of the image is too narrow 
to see any details. 

Authier (1967) attempted to explain the contrast 
of a traverse topograph as the integration, during the 
scanning of the crystal, of the direct image of the 
defect. Applying the kinematical theory he could 
predict the width of the image. This simplified 
approach is rather satisfactory (Miltat & Bowen, 
1975) but does not permit a full characterisation of 
the defect. 

Quantitative measurements are achieved by the 
study of the fine details of the contrast of the defect 
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